

REAL SMART HOME GmbH

# APPMODULE VALUE App Documentation

Version: 1.2.0 Type: Application Article No.: BAB-058

> Documentation version II Actual state 09/2019 Date: 12. September 2019



REAL SMART HOME GmbH

HörderBurgstraße 18 D-44263 Dortmund

Email: info[at]realsmarthome.de

Tel.: +49 (0) 231-586974-00 Fax.: +49 (0) 231-586974-15 www.realsmarthome.de

# TABLE OF CONTENTS

| 1 | Intro | duction                                                   | . 4 |
|---|-------|-----------------------------------------------------------|-----|
| 2 | Func  | tional overview                                           | . 5 |
| 3 | The i | nnovative, modular App-conept for the building automation | . 6 |
|   | 3.1   | Information about the APPMODULE                           | .6  |
| 4 | Арр   | installation / Update                                     | . 7 |
| 5 | Арр   | Settings                                                  | . 8 |
|   | 5.2   | VALUE<br>Group Addresses<br>Generator Parameters          | .8  |
| 6 | Atta  | chment                                                    | 1   |

1

## INTRODUCTION

Thank you for your trust, and the purchase of the VALUE app for the BAB **APP**MODULE. With this app you can generates values and sends them as KNX telegrams.

Versatile setting options such as "generator type", "value type", "transmission interval" or "data point type", as well as the possibility to define minimum and maximum values for this value make this app a particularly flexible tool.

In addition, the values and period duration can be assigned a variance in order to adapt the output values even better to the e.g. test setup.

This documentation will help you get started with the app and aims to improve your setup experience.

REAL SMART HOME GmbH

#### IMPORTANT INFORMATION ON THE OPERATING INSTRUCTIONS

We reserve the right continually improve the product. This entails the possibility that parts of this documentation might be out-of-date. You will find the latest information at:

www.bab-appmarket.de

2

### **FUNCTIONAL OVERVIEW**

"VALUE" you can generate up to 35 different values and send them cyclically as KNX telegrams to the KNX bus.

Versatile setting options such as "generator type", "value type", "transmission interval" or "data point type", as well as the possibility of defining minimum and maximum values for this value, make this app a particularly flexible tool.

In addition, the values and period duration can be assigned a variance in order to adapt the output values even better to the e.g. test setup.

#### Highlights:

- Fluctuate the initial value by specifying the maximum variance (in percent).
- Adjustable value ranges with lower and upper limits
- Percentage (allowed) deviation for lower and upper limit
- Optional sum output for generated values
- Three generator types to choose from (constant value, saw (or triangular) wave and sine wave)
- Selection of different data point types for output values
- Determining the period length
- Synchronization minute (minute of the day) for daily synchronization of the period.
- period flexibility
- Transmission interval (in seconds)

## THE INNOVATIVE, MODULAR APP-CONEPT FOR THE BUILDING AUTOMATION

The innovative, modular app concept for building automation. The **APP**MODULE brings the innovative, modular app concept into building automation. You can mix and match any of the diverse applications that are available to ingrate third-party solutions. With these apps from the dedicated **BAB** APP MARKET, the **APP**MODULE becomes a tailor-made integration unit for your building automation.

# HOW IT WORKS



3

PURCHASE AN APPMODULE Purchase BAB TECHNOLOGIE's APP MODULE via a wholesaler.



### REGISTER

Register your APP MODULE. Each app is bound to one device.





Buy and download your favorite apps for your APP MODULE..



#### INSTALL YOU APPS

Install your downloaded apps on your APP MODULE. You can start to configure your apps immediately.

Manufacturer of the **APP**MODULE <u>BAB TECHNOLOGIE GmbH</u>

Distribution of all apps for the APPMODULE BAB APP MARKET GmbH

App developer <u>REAL SMART HOME GmbH</u>

## 3.1 INFORMATION ABOUT THE APPMODULE

Please refer to the separate product documentation of the **APP**MODULE for a detailed product description and setup instructions.

http://www.bab-tec.de/index.php/download\_de.html

#### Product variants:

The **APP**MODULE is available in three variants:

- APPMODULE KNX/TP for stand-alone use on KNX/TP Bus
- **APP**MODULE EnOcean for stand-alone use in the EnOcean wireless network
- APPMODULE IP for use in an IP-based KNX installation (KNXnet/IP) or as extension for an EIBPORT

## 4 APP INSTALLATION / UPDATE

Please proceed as follows to install an App.

- 1. Open the APPMODULE web page: Enter <IP Address of APPMODULE> into your browser's address bar and press Enter. The APPMODULE web interface will appear.
- 2. Log in with your user credentials. Please refer to the APPMODULE documentation for login details.
- 3. Click on the menu entry "App Manager"
- 4. You are now on the page where already installed Apps are listed. The list will be empty if no apps have been installed. Click "Install App" in order to install a new app.
- 5. Now click on "Select App"; a file selector window will appear. Choose the app and click "OK". The App must first be downloaded from the BAB APP MARKET (www.bab-appmarket.de).
- 6. After the message "Installation successful" appears, click "OK". You are ready to configure the App.
- 7. To update an already installed app, click on the App icon in the "App Manager".
- 8. The detail view of the App appears. Click on "Update App" to select the app package and start the update. The update version must be downloaded from the BAB APP MARKET.

After the message "Installation successful" appears, click "OK". The app has been updated. Your instance configurations will remain unchanged.

#### Information

To configurate the App please use Google Chrome.

## 5 APP SETTINGS

This chapter explains the individual configuration parameters and options of the "VALUE" App.

## 5.1 VALUE

To create instances please click on the following symbol "+ create nstance". Please note that a maximum of 25 instances can be created.

#### Instance Name:

Choose a name for this new instance.

#### Comment:

Insert a description what this instance does.

## 5.2 **GROUP ADDRESSES**

#### Input Object (optional):

Group address for input commands. Turns constant values on (1) and off (0), resets the period for other generator types.

#### **Output Current Value:**

Group address on which the currently generated value will be sent.

#### Output Aggregate (optional):

Group address on which the aggregate will be sent.

## 5.3 GENERATOR PARAMETERS

#### Generator Type:

Specify which type of values the app should generate.

- Constant value: for a defined period there is a square wave which is set to maximum in each period for 'increase percentage'.
- Saw wave: Period starts at Min, rises to Max in 'Rise share'%, falls for the rest of the period and ends at Min.
- Sine wave: period begins and ends halfway between Min and Max.
  - Constant value
  - Sawtooth
  - Sine wave

#### Value Data Type:

Choose a corresponding data type that can hold your desired values

- EIS 5
- EIS 9
- EIS 10s
- EIS 10u
- EIS 11s
- EIS 11u

#### Aggregate Data Type:

Choose a corresponding data type that can hold your desired values

- EIS 9
- EIS 11u

#### Min. Value:

Specify the minimum value for the initial value.

#### Min. Value Flexibility (%):

Specify how much the minimum value may fluctuate per period. For each period, a random value is generated within the maximum allowed variance.

If the value equals 0, then all periods have identical minima, for example, a minimum temperature for a temperature with a 24-hour period would be identical every day.

#### Max. Value:

Define the maximum value that should be sent.

#### Max .Value Flexibility (%)

Define how much the maximum value of the wave is allowed to fluctuate in between periods. A new random value within this derivation will be calculated for each new period. If set to zero, all periods will have identical max values, for example a solar power panel would produce identical max output every day.

#### <u>Jitter (%)</u>

Define a maximum allowed variance for any value. Before sending the calculated value it will be modified with a random factor. Use this for example to have a constant value fluctuate. Note: Zero values will not jitter to prevent something like a '1' being sent when a virtual device is off.

#### Sync Minute

Set a specific minute of the day when a period should start. The start will be at a random second within this minute to prevent a flood of telegrams on the KNX bus at any given moment when several instances of this generator are running.

This is meant to sync the value to the day cycle, so that e.g. an exterior temperature will not peak at night just because you started the app at a specific time. Depending on the period of your wave, the cycle will of course start more often in a day.

#### Period (s)

Define the period of the wave. 24h = 86400, 12h = 43200, 1h = 3600.

#### Period Length Flexibility (%)

Define how much the period length may vary from the default. A new random value within this derivation will be calculated for each new period.

Note: this will influence the sync behavior. Sync calculates with the default period. The larger period fluctuations and the shorter the periods are, the more likely peak sync will be off a bit.

#### Ascend Period (%, integer)

Define how many % of the period should be ascending. For generator type 'constant value' this will set how long max value will be sent within a period.

#### Send Interval (seconds)

Defines the interval at which values will be sent (and generated, if they are variable)

## 6 ATTACHMENT

| function              | EIS<br>type | DPT     | typical<br>function         | typical values                                                    | data                 | identifier             |
|-----------------------|-------------|---------|-----------------------------|-------------------------------------------------------------------|----------------------|------------------------|
| PriorityPosi-<br>tion | EIS1        | DPT 1*  | Wind alarm                  | 1=high and inhibit                                                | 1 Bit                | 1-bit                  |
| Switch                | EIS1        | DPT 1*  | Light switching             | 0=Off; 1=On                                                       | 1 Bit                | 1-bit                  |
| DimControl            | EIS2        | DPT 3*  | Dimming                     | 0=Off; 1=On<br>xxxx=relative dimming<br>0-255=absolute<br>dimming | 1Bit<br>4Bit<br>8Bit | 3-bit controlled       |
| Time                  | EIS3        | DPT 10* | Time                        | Hhh:mm:ss                                                         | 3 Byte               | Time                   |
| Date                  | EIS4        | DPT 11* | Date                        | dd:mm:yyyy                                                        | 3 Byte               | Date                   |
| Value                 | EIS5        | DPT 9*  | Value                       | [-671088.64<br>670760.96]                                         | 1Byte                | 2-byte float<br>value  |
| DimValue              | EIS6        | DPT 5*  | Percent                     | 0-100%                                                            | 1Byte                | 8-bit unsigned value   |
| DriveBlade<br>Value   | EIS6        | DPT 5*  | Position value              | 0-100%; 0-255                                                     | 1Byte                | 8-bit unsigned value   |
| DriveShutter<br>Value | EIS6        | DPT 5*  | Position value              | 0-100%; 0-255                                                     | 1Byte                | 8-bit unsigned value   |
| Position              | EIS6        | DPT 5*  | Control value<br>Heating    | 0-100%; 0-255                                                     | 1Byte                | 8-bit unsigned value   |
| DriveMove             | EIS7        | DPT 1*  | Move shutter                | 0=up 1=down                                                       | 1Bit                 | 1-bit                  |
| DriveStep             | EIS7        | DPT 1*  | Adjusting the slat blind    | 0=up; 1= down; 0 or<br>1 during<br>movement=stop                  | 1Bit                 | 1-bit                  |
| PriorityCont-rol      | EIS8        | DPT 2*  | Priority                    | 0,1 switch; 3=forced<br>off; 4=forced on                          | 2Bit                 | 1-bit controlled       |
| FloatValue            | EIS9        | DPT 14* | IEEE                        | Floating-point value                                              | 4 Byte               | 4-byte float<br>value  |
| Counter 16bit         | EIS10       | DPT 7*  | Counter<br>16 bit           | 0 - 65.535                                                        | 2Byte                | 2-byte unsigned value  |
| Counter<br>16bit      | EIS10       | DPT 8*  | Counter 16 bit<br>with sign | -32.768 - 32.767                                                  | 2Byte                | 2-byte<br>signed value |
| Counter 32bit         | EIS11       | DPT 12* | Counter<br>32 bit           | 0 - 4.294.967.295                                                 | 4Byte                | 4-byte unsigned value  |
| Counter 32bit         | EIS11       | DPT 13* | Counter 32 bit with sign    | 0 - 4.294.967.295                                                 | 4Byte                | 4-byte<br>signed value |
| Access Control        | EIS12       | DPT 15* | Access control              | Card number                                                       | 4Byte                | Entrance access        |
| Char                  | EIS13       | DPT 4*  | ASCII<br>characters         | Character                                                         | 1Byte                | Character              |
| Counter 8bit          | EIS14       | DPT 5*  | Value                       | 0 - 255                                                           | 1Byte                | 8-bit unsigned value   |
| Counter 8bit          | EIS14       | DPT 6*  | Value with sign             | -128 - 127                                                        | 1Byte                | 8-bit<br>signed value  |
| String                | EIS15       | DPT 16* | String                      | max. 14 characters                                                | 14 Byte              | Character string       |

EIB/KNX devices exchange fixed prescribed data formats with each other. These are defined in types. The old designations of the types are EIS (EIB Interworking Standard) The new designations are DPT (Data Point Type)